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Abstract

This paper develops two different recursive VAR methodologies to invest-
igate the dynamic interactions between aggregate carbon dioxide emissions
and a host of macroeconomic variables over the short-run, for the 1949–2018
period. I motivate the identification strategy from an extended Kaya
identity, including renewable energy consumption and the number of
employed workers. Moreover, from the recent claims on green growth made
by multilateral institutions, I emphasize the role played by technological
progress to promote absolute decoupling between economic activity and
environmental damage. In both VAR estimations, I compute CO2 emissions
responses to technology, non-renewable and renewable energy use, pop-
ulation, and output structural shocks. A battery of tests and robustness
results indicates that technology and non-renewable energy use shocks
positive and significantly affect emissions over the short-run. Furthermore,
historical growth paths of labor and energy productivity have neither been
translated into decreasing the use of non-renewable sources nor reducing
emissions.
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1 Introduction

Economic growth sustained by fossil fuels is incompatible with environmental
sustainability. Increased population, consumption, and development levels
require rising energy demands, and achieving these standards in a sustainable
way is the main global challenge for the next decades. Several institutional efforts
evaluate diverse scenarios with the aim of mitigating greenhouse gas emissions,
while still maintaining economic growth. The green growth hypothesis takes
center stage in this debate. Its central claim is that technological progress
and resource substitution are mechanisms for a potential absolute decoupling
between economic growth and the natural environment. In other words, these
would allow for a reduction in greenhouse gas emissions, while still promoting
growth. Simultaneous achievement of higher employment and output levels
and mitigation of climate change is supposed to be possible with the application
of new and improved low-emissions production methods.

This paper addresses one of these mechanisms: does technological progress
lead to reductions in emissions in the short-run, in the US post-war macroe-
conomy? It develops two different Vector Autoregressive (VAR) strategies that
aim to estimate what are the main structural shocks affecting carbon dioxide
(CO2) emissions in the US economy over the 1949–2018 period. Among these,
I highlight technology, non-renewable and renewable energy use, population,
and output shocks as the main potential determinants of carbon emissions. This
identification procedure follows an extended Kaya identity, based on energy
intensity, population growth, employment, and technology variables, emphasiz-
ing the role of the latter to promote both economic growth and environmental
sustainability, as claimed by recent institutional views on green growth. Firstly,
I propose a single-step VAR model, where I directly evaluate the dynamic
interactions between emissions and other macroeconomic variables. Secondly,
I estimate a two-step VAR, initially not accounting for emissions. Following a
novel methodology developed in Kilian (2009), I retrieve its structural shocks
and, in a second step, compute the response of CO2 emissions to each of these
exogenous shocks via regression models.

Key results can be summarized as follows. The baseline procedure involves
estimating the one- and two-step VAR models with variables in levels. For the
one-step procedure, only a non-renewable energy use shock significantly affects
carbon emissions over the short-run. On the other hand, the two-step VAR con-
firms the latter and also a technology shock positive and significantly impacting
CO2 production. In addition, I run several robustness checks, including using
variables in first differences and also de-trended with the Hodrick-Prescott (HP)
filter, as well as using two other proxy variables denoting a technology shock: the
aggregate capital stock and total factor productivity. Most of the models verify
both non-renewable energy use and technology as the main structural shocks
positively affecting aggregate carbon dioxide emissions in the US economy
over the short-run. Thus, this paper’s contribution is twofold: (i) I identify
VAR models based on theoretical assumptions, derived from an extended Kaya
identity and the recent institutional claims for green growth; and (ii) historically,
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the US economy’s technological progress path does not support reductions in
emissions. In contrast, it increases environmental harm.

These facts render important inferences towards a possible concomitant
scenario of economic growth and environmental sustainability, as claimed
by green growth hypotheses. Although the US economy has experienced
increasing rates of labor and energy productivity over this sample period, such
technological progress path has not been translated into the development of more
sustainable techniques that effectively reduce carbon emissions. Conversely,
not only has technological progress promoted heavier use of non-renewable
energy sources, but also increased emissions over time. Therefore, the US
economy’s historical technological and growth paths appear to be inconsistent
with environmental sustainability. While these results pertain only to the
short-run, they do raise important questions about the nature of the debate
regarding mitigation.

It must be emphasized that a reduction of emissions implies absolute de-
coupling; relative decoupling is not sufficient. The empirical literature on
this issue may be broadly categorized into policy-driven and multivariate
backward-looking analyses. The former would imply that only a big push with
public investments towards renewable energy sources and increased carbon
taxes can trigger such a shift. In contrast, the latter uses historical data to
investigate short- and long-run dynamic linkages between environmental and
macroeconomic variables. This paper does not assess potential future policy
programs. Instead, it narrowly investigates whether aggregate technical change
in the short-run implies sufficient improvements in energy use that could
support a reduction in CO2 emissions. The central finding suggests the opposite:
improvements in technology increase emissions, rather than decrease them.

The rest of the paper is organized as follows. Section 2 reviews the interac-
tions between greenhouse gas emissions and the macroeconomy throughout
different strands of the literature. Section 3 outlines the empirical strategy by
first motivating the theoretical priors, and then describing the two different VAR
estimation procedures. Section 4 briefly illustrates the data set and the historical
evolution of its variables. Section 5 presents and discusses results from the
econometric models, also applying several robustness checks. Finally, Section 6
summarizes the paper’s main findings and suggestions for future research.

2 Literature review

Economic growth sustained by fossil fuels is incompatible with environmental
sustainability. In both theoretical and empirical grounds, growing interdisciplin-
ary research agendas investigate a possible decoupling between growth, energy
consumption, and greenhouse gas emissions. This section reviews this literature
and its different emphases. I do not attempt to exhaustively cover all relevant
research, but to touch upon its major themes, framing the empirical methodology
in the next section. Broadly speaking, the applied literature may be divided
into policy-oriented and multivariate backward-looking analyses, whose main
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branches will be further explored. Finally, it is important to mention these
agendas are connected by the necessity of decoupling. I thus define this term
first, then circumscribing how decoupling is approached (i) in the dominant
long-run modeling framework and its critiques; (ii) within the institutional view
on green growth; (iii) in applied works using decomposition and time-series
methodologies; and (iv) in the context of globalization and international trade.

The series of economic revolutions established by human action are summar-
ized by how well energy inputs could respond to higher production demands.
The seminal note by Kraft and Kraft (1978) empirically tests the association
between energy use and Gross National Product (GNP) for the US economy
between 1947 and 1974. Through a simple Vector Autoregressive (VAR) analysis,
the authors find a unidirectional causation relationship from GNP to energy
use. While corroborated by later works, there is no empirical consensus on this
issue, especially due to data and geographical reasons.1 While, on one hand,
these demands were met, on the other, reliance on fossil fuels brought along the
unintended consequence of increased damages to the biosystem, escalating to
the current levels of global warming (Ayres and Warr 2010). To address this issue,
studying the interactions between greenhouse gases with other macroeconomic
variables is imperative.

From this setting, a possible decoupling between growth and environmental
damage arises as a crucial question (Jorgenson and Clark 2010). Whether in
absolute (i.e., when aggregate carbon emissions or energy use decrease over
time) or relative terms (when the ratio between emissions and output or between
energy and output decrease over time), such concept appears either explicit or im-
plicitly within the literature as a unifying criterion for the economy-environment
connection. Although theoretical priors and empirical methods may diverge,
decoupling is a focal point within the literature. I start with policy-oriented
works on mainstream and alternative approaches.

The Dynamic Integrated models of Climate and the Economy (DICE) presen-
ted in Nordhaus (2008) and Nordhaus (2014), as well as its other revisions, are
benchmark neoclassical general equilibrium models, serving as a foundation
for many long-run simulation and policy-oriented studies.2 Its theoretical
backbone lies on the assumption that economies invest in education, capital, and
technological improvements, while reducing present consumption. Moreover,
the climate structure is considered as a component of the aggregate capital stock,
and these investments aim to reduce greenhouse gas emissions, so that overall
consumption can be increased in the future.

Inspired by the DICE setting, Heutel (2012) defines emissions as a by-product
of output production, and abatement efforts negatively associate with the
emissions-to-output ratio. The main research question addresses how tax and
cap policies should adapt to business-cycle fluctuations, finding out that both
policies, at their optimal levels, allow emissions to be procyclical: increased

1See Akarca and Long II (1979), Yu and Choi (1985), and Erol and Yu (1987), for instance.
2As an exception, Fischer and Springborn (2011) use a Real Business Cycle (RBC) model to

evaluate different environmental policies, abstracting from DICE references. For an empirical
response to neoclassical simulation studies, see Doda (2014).
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in expansions, and decreased in recessions. Lemoine and Rudik (2017) design
possible cost-effective paths to sustain the increase in global average temperature
below 2◦C, relative to pre-industrial levels, as indicated by the 2015 Paris
Agreement (UNFCCC 2015). According to the authors, delaying abatement
policies (such as carbon pricing) may be the most cost-effective measure, since
warming does not simultaneously respond to greenhouse gas concentration.
Therefore, leveraging on this supposed inertia would make future carbon prices
lower than in the present, while still being feasible to control the increase in the
average global temperature.

A critique to this latter analysis is made by Mattauch et al. (2019). It is
argued that the above conclusion is based on non-conventional atmospheric
modeling approaches, mainly relative to the carbon cycle and the response of
global temperature to increased emissions. Appealing to standard atmospheric
science, the authors consider this inertial behavior an ad hoc device. Moreover,
by modifying these definitions, they reach an initial price of US$ 5.60 per ton of
carbon dioxide, and propose cutting emissions to zero by the second half of the
present century to achieve the 2◦C target.3

Still on the 2◦C target, Marquetti et al. (2019) evaluate the Paris Agreement’s
proposed distribution of abatement efforts by outlining the stylized facts of out-
put production, technological progress, and carbon dioxide (CO2) emissions for
84 countries between 1980 and 2014. Among other points, the authors conclude
that several developed countries have low emission rates, with some presenting
absolute decoupling, such as France, Italy, and the United Kingdom. On the
other hand, developing economies with high output growth have also high rates
of emission. Therefore, maintaining increasing rates of labor productivity with
decreases in the energy-labor ratio will require fast upticks in energy efficiency,
which will unlikely be sufficient to achieve this target.

Using dynamic features from the DICE model, Rezai et al. (2018) shift from
a supply to a demand-driven approach, highlighting the interdependence of
economic growth, productivity, climate change, and income distribution. Their
medium- to long-run analysis involves three scenarios: one with no mitigation
policies, one with a 2◦C target, and a full-abatement strategy. Furthermore,
the model is calibrated to maintain an output growth of 3% in all scenarios.
In the first, faster growth implies faster net emissions, with an increase in
global temperature of 4◦C by the end of the century, and a 7◦C peak in 300
years. Abatement policies, on the other hand, also avoid economic stagnation:
considering historical evidence, it is still possible to increase economic activity
and employment, while mitigating greenhouse gas emissions. The further
challenge, however, lies on managing the possible tension on the existing
institutional framework allowing such changes to take place.

Semieniuk et al. (2018) analyze an even more optimistic scenario by the
Intergovernmental Panel on Climate Change (IPCC) 2018 report, aiming to
keep average global temperature below 1.5◦C (IPCC 2018). The authors present
simulations where full mitigation would require an initial effort of 6% of world’s

3For more on carbon pricing, see van der Ploeg and Rezai (2019).
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GDP, decreasing to 2% near 2200. Such push would be financed by carbon taxes
and/or subsidy reduction to fossil-fuel industries. While possible, this and the
aforementioned measures require radical shifts in countries’ macroeconomic
planning, as well as an unprecedented coordination that no institutional or
political efforts have been able to promote until now.

These latter critiques subscribe to the recent Ecological Macroeconomics
research agenda (Rezai and Stagl 2016). By unifying macroeconomic theory
with environmental sustainability, works in this strand have gained prominence
since the Great Recession. Among different stimulus policies, those promoting
ecological conservation, such as investing in pollution mitigation, renewable
energy sources, and increased energy efficiency have increased, relative to
previous years (Pollin et al. 2008). At a more general institutional viewpoint, the
concept of green growth has gained prominence in multilateral organizations,
such as the United Nations, the World Bank, and the OECD. These have issued
reports containing different definitions of an economic growth regime that is
compatible with minimizing environmental damage, while also allowing for
increased levels of well-being and poverty reduction (OECD 2011; UNEP 2011;
World Bank 2012).

Furthermore, these reports agree on the two key mechanisms that are able
unfold this scenario: technological change and resource substitution (Hickel and
Kallis 2020). Assuming rising population and consumption levels over future
generations, environmental impact is imminent, unless technology and input
use adapt to such scenario. It is also argued that green growth initiatives may
create new jobs in low-carbon and renewable energy sectors, such as wind, solar,
and recycling fields (Jacobs 2013). Despite its audacity, it is still not clear how
such changes will take place over the next decades, and, more importantly, such
claims must also be empirically evaluated. So far, the green growth hypothesis
has not been sustained by evidence (Semieniuk 2018; Hickel and Kallis 2020).
This framework will be further developed in the next section.

A different analytical strategy from those above are decomposition exercises
involving the Kaya identity. In its standard version, greenhouse gas emissions
are related to energy use, population, and economic growth (Kaya 1990). A
few examples are O’Mahony (2013), Shahiduzzaman and Layton (2015), and
Tol et al. (2009). The first concentrates on Ireland’s economy between 1990 and
2010, investigating the main drivers of CO2 production through an extended
Kaya identity (by including renewable energy sources), utilizing a Log Mean
Divisia Index (LMDI) approach. It is found that renewable energy penetration
is still nascent, while energy intensity (the ratio between the energy input and
output) improvement and fossil fuel substitution are capable of countering
population and affluence (income) growth, the two main determinants of local
carbon emissions.

The second, applied to the US economy, broadens the previous analysis by
scrutinizing the asymmetrical behavior of carbon emissions during business
cycle expansions and recessions. Also with an LMDI approach, and using yearly
data from 1949 to 2014, as well as monthly data starting in 1973, it is found
that that emissions, both in aggregate and intensity measures, decrease faster
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during recessions than increase over expansions. Also, during the most recent
post-crisis period, emissions per capita are still declining, at a similar rate to
that of reduction during contraction years. Finally, the third study proposes
thinking beyond population growth and economic performance to evaluate CO2
emissions over the long-run, also considering energy supply, technological, and
behavioral changes. For three subperiods (1850–1917, 1917–1960, and 1960–2002),
and dismembering emissions intensity (i.e., the ratio between emissions and
output) into six components4 through a multiplicative mean divisia index, it
is shown that the first subperiod experienced a rise in emissions intensity, due
to population and economic growth, as well as intensive electrification and a
switch from wood to coal within industrial production. Energy intensity peaked
in 1917, and, after this year, emissions intensity have fallen. In addition to the
previous determinants, there was no net shift from fossil to non-fossil energy
sources.5

Beyond the usual elements of decomposition analyses, globalization and
international trade have gained prominence within environmental macroeco-
nomic studies. Within this literature, the Environmental Kuznets Curve (EKC)
hypothesis is a relevant theoretical feature. At initial stages of development,
agriculture and resource extraction tend to deplete nature at a higher rate than
its recovering capabilities, increasing waste and pollution. Then, as development
advances, environmental awareness, technological progress, and economic integ-
ration tend to slowly decelerate these externalities and improve environmental
quality.6 These two distinct phases would then produce an inverted U-shaped
association between pollution and income. Soytas et al. (2007) test a long-run
Granger causality between energy use and emissions within an EKC setting.
While the former is found significant, no evidence supports causality between
the emissions and income growth for the 1960–2004 period. These results are
based on generalized impulse-response functions and variance decomposition
analyses, thus not offering a theory-based identification strategy (Pesaran and
Shin 1998).

Relating international trade to a possible decline in the environmental quality
of poorer countries, the “pollution haven” and “race to the bottom” hypotheses
are commonly considered in these studies. The former states that poorer econom-
ies with lax environmental standards may act as attractors of heavy polluters
from rich countries. According the the second proposition, as liberalization
increases international competition, poorer countries may experience income
increases by hosting external industry relocation; however, if part of this income
is not invested in stronger environmental policy, the EKC scenario does not
move beyond its initial stage (Wheeler 2000).

Empirical results, however, do not indicate significant impacts of interna-

4These are (i) changes in population, (ii) income per capita, (iii) energy intensity, (iv) primary-
final energy consumption ratio, (v) fossil-non fossil fuels mix, and (vi) in the ratio between
emissions and fossil primary energy use.

5For different identity uses on the relationship between energy and the environment, see York
et al. (2003).

6For a thorough survey of theoretical and empirical works on the subject, see Dinda (2004).
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tional trade on increased emissions. Neoclassical general equilibrium models of
Antweiler et al. (2001) and Copeland and Taylor (2004), cross-country regression
models of Frankel and Rose (2005), and the probit estimation of Javorcik and Wei
(2004) do not find empirical support neither for the pollution haven nor the race
to the bottom conjectures. An exception is the multivariate time-series analysis
of Hossain (2011), that, for a panel of nine newly industrialized economies
between 1971 and 2007, finds several short-run causal relationships — the most
relevant being economic growth and trade openness Granger-causing carbon
emissions —, but no long-run panel causal association among the variables.
Similar causality inferences are presented by Ertugrul et al. (2016), who apply
the same method for the top-ten emitters among developing economies between
1971 and 2011, also finding support for the EKC hypothesis for Turkey, India,
China, and South Korea. These latter two analyses, however, also do not offer
theory-based identification strategies for their multivariate models.

In essence, detaching increased environmental damage from economic growth
permeates all strands of literature hitherto discussed. All agendas supply
relevant points, which will be of major importance in the present empirical
analysis. From policy-oriented works in Ecological Macroeconomics, I highlight
technology as a critical component of environmental macroeconomic models.
As in the reviewed decomposition exercises, my starting point will be an exten-
ded Kaya identity, that, beyond its standard elements, will include renewable
energy sources and employment. Lastly, my applied methodology will focus
on multivariate time-series techniques, following theoretical priors informed
by the Kaya identity and the institutional view on green growth. Unlike other
time-series investigations, I follow these priors to motivate a causal ordering for
the empirical models. By emphasizing the role of technological progress on envir-
onmental sustainability, this procedure allows for estimating the main structural
determinants of carbon dioxide emissions for the US economy over the post-war
period, and whether technology has contributed to reduce environmental harm.

3 Empirical strategy

This study’s main purpose is to investigate what are the main structural shocks
affecting aggregate carbon dioxide emissions in the US economy over the post-
war period. In this section, I motivate the empirical methodology to answer this
question.

Initially, I propose a theoretical framework inspired by the Ecological Mac-
roeconomics literature, along with the recent institutional view on green growth
analyzed in the last section. The first helps us in setting up a Kaya decomposition
to explore the linkages between macroeconomic variables and carbon emissions.
The second allows for a closer evaluation of the role played by technological
progress to simultaneously promote economic growth and environmental sus-
tainability.

I use these theoretical priors to identify recursive Vector Autoregressive
(VAR) models, whose impulse-response functions will inform the main shocks
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affecting CO2 emissions. This will be done in two ways. First, with a single-step
VAR procedure. Second, I estimate a two-step VAR model, initially computed
without emissions. Then, by retrieving its structural shocks, I quantify the
response of CO2 production to these exogenous shocks via regression models in
a second step.

3.1 Overview

This paper’s interest lies on the dynamic interactions between CO2 emissions
and macroeconomic variables over the short-run. I first define emissions, ΦC ,
as an unintended outcome of economic activity, derived from anthropogenic
influence on the natural environment. These are a product of the interactions
of several variables, among which are considered the state of the business
cycle, .C , aggregate primary energy demand (including both renewable and
non-renewable sources), �C , population growth, %C , and the number of employed
workers, !C . Given the addition of this latter variable, we have an extended Kaya
identity:

ΦC ≡
.C

!C
· �C
.C
· ΦC
�C
· !C
%C
· %C (1)

where .C/!C is output per worker, or labor productivity; �C/.C is the energy
intensity of output; ΦC/�C is the emissions share of energy use; and !C/%C is the
employment rate, all at time C .

The main source of pollution and waste comes from the use of fossil fuels,
such as coal, petroleum, and other chemicals, employed to generate output.
Carbon dioxide, along with other greenhouse gases, such as methane and nitrous
oxide, scatters and concentrates in the atmosphere, yielding higher levels of
global warming. To overcome this scenario, green growth theory proposes that
technological progress and resource substitution are the leading drivers of an
absolute decoupling between economic growth and environmental harm.7 In
other words, shifting from “dirty” to cleaner technologies, as well as improving
energy efficiency, can reduce aggregate greenhouse gas emissions while still
improving production and economic growth.

More specifically, green growth theory argues that that rising technological
progress correlates with a reduced acceleration, or even a decrease, in energy
intensity. Semieniuk (2018) stresses that such view credits models of embodied
technical change, where improvements in technological capacity can only be
implemented via investments in new equipment (Jorgenson 1966; Berndt et al.
1993). Such improvements are, then, materialized in new capital goods, either
fueled by renewable energy or using traditional sources more efficiently, thus
reducing waste and pollution.8 Thus, upticks in productivity tend to make older
and more energy-consuming (i.e., more pollutant) techniques be replaced by

7Resource substitution will not be further studied in this paper.
8For an induced view of technical change concerning climate policy, see Wing (2006).
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newer, energy-saving ones, offsetting increases in energy intensity. Following
Taylor (2009), energy intensity may be decomposed into two factors:

�C

.C
≡ !C
.C
· �C
!C

(2)

where !C/.C is the inverse of labor productivity, and �C/!C is the energy-labor
ratio, or the energy-deepening degree of production. Log-differentiation of (2)
yields

[̂ ≡ n̂ − b̂ (3)

with “ˆ” symbols meaning growth rates. Equation (3) illustrates that when
productivity growth (b̂) is faster than the degree of energy-deepening (n̂), there
is a relative decoupling between output and energy use ([̂ < 0). In other words,
(3) shows that if the rate of technical change grows faster than the proportion
between energy and labor inputs, the rate of energy use relative to output growth
decreases.

Next, the emissions intensity of energy use are decomposed in the following
way:

ΦC
�C
≡ ΦC
!C
· !C
�C

(4)

where ΦC/!C are emissions per worker. From (2), we have !C/�C = !C/.C · .C/�C .
Then, canceling out energy use on both sides, we end up with

Φ̂ ≡ ˆ̀ + .̂ − b̂ (5)

Equation (5) shows that the growth rate of aggregate carbon emissions (Φ̂) are
positively associated with the growth rates of emissions per worker ( ˆ̀), output
growth (.̂ ), and negatively with labor productivity growth. In other words, there
is an absolute decoupling (Φ̂ < 0) whenever the rate of labor productivity grows
faster than the sum of the growth rates of emissions per worker and output.

The extended Kaya identity assumes a positive relationship between labor
productivity and emissions, while equation (5) offers a negative association
between technological progress and emissions. Along with equation (3), I em-
phasize the role played by technology for both relative and absolute decoupling
relationships, as suggested by green growth advocates. Obviously, it is beyond
the scope of this paper to infer causality on the basis of these identities, though
these help to motivate the notion of green growth. I further investigate the
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empirical linkages between technology and emissions using the econometric
techniques I outline next.

3.2 VAR identification strategies

To empirically investigate the relationships outlined in equations (1), (3), and (5)
over the short-run, Vector Autoregressive models are a well-suited econometric
technique. It consists of a linear model where each variable of the system is
explained in terms of its present and lagged (past) values, as well as of present
and past values of other terms (Sims 1980). From its estimates, we are able to
study how variables react to shocks to other variables in the system, through a
procedure known as Impulse-Response Functions (IRFs).9

I study how aggregate carbon dioxide emissions react to macroeconomic
shocks in two ways. First, I motivate a recursive VAR model in a single step,
following an identification strategy inspired by the relations explored in the
previous subsection. Second, I follow the methodology adopted by Kilian (2009)
and Mendieta-Muñoz et al. (2020), by estimating a recursive VAR without CO2
emissions.10 On the premise that the structural shocks derived from this second
model are exogenous and predetermined, I evaluate the response of emissions
to these innovations in a second step.

3.2.1 One-step procedure

A VAR(?) model can be represented by

�aC = U +
?∑
8=1

�8aC−8 +DC (6)

where the � matrix captures the contemporaneous linkages among the variables;
the �8 matrices carry the connections between current and past values; the row
vector aC compresses the set of variables present in the system; ? is the lag length
(order) of the VAR model; U is a vector of intercept terms; and DC is a vector of
serially uncorrelated structural innovations (shocks).

Due to endogeneity, the structural innovations enclosed in DC are not directly
observable. Hence, it requires the estimation of reduced-form residuals, denoted
by YC = �−1DC . I then proceed to an identification strategy, guided by theoretical
priors. To estimate a reduced-form VAR, as in equation (7), we need enough
restrictions (i.e., zero entries) in the �−1 matrix. For = endogenous variables, we
need at least =(= − 1)/2 restrictions.

9It is important to highlight that such responses to shocks cannot be considered causal
relationships, due to the correlation among the variables. Such fact may generate shocks are that
contemporaneously correlated with themselves. In order to produce interpretable innovations,
we must estimate orthogonal shocks, contemporaneously uncorrelated with all other shocks.

10In these two works, their identification strategies are developed through Structural VAR
(SVAR) models.
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aC = V +
?∑
8=1

�8aC−8 + YC (7)

where now the �8 matrices denote the interactions among the variables within
the system, and V is an intercept vector.

In order to identify the VAR model, I adopt a recursive strategy, based on a
particular causal ordering of contemporaneous effects from one variable to the
others. In these cases, the mathematical representation of the�−1 matrix involves
either an upper or lower triangularization reflecting contemporaneous effects.
This fact guarantees a unique solution, which is an advantage of recursive over
Structural VAR (SVAR) models (Enders 2008).

Theory must guide an identification strategy. In this paper, I combine the
interactions from equation (1) and the central role played by technology from the
green growth hypothesis illustrated in equations (3) and (5). Initially, I assume
that the current technological setup is exogenously given, and it contemporan-
eously affects both CO2 emissions and output growth.11 As prescribed by the
embodied technical change paradigm, technological progress can either (both)
increase energy efficiency or (and) develop newer processes using renewable
sources, as well as creating more jobs with the development of cleaner industries.
As a general result, technology allows for a more efficient energy use, with the
benefit of increasing output in a more sustainable way.

In light of this description, I identify this VAR model by employing the -C →
�C → %C →.C → ΦC short-run causal ordering. In other words, technology contem-
poraneously affects energy use, whose short-run population effects translate into
higher employment levels. Then, output is contemporaneously affected by all
previous variables, and emissions are assumed to contemporaneously respond
to all covariates in this causal chain. My identification strategy thus reflects
adjustment speeds: given its exogeneity, technology is not contemporaneously
affected by any other variable, being the slowest to adjust to shocks coming from
other covariates. On the other hand, the last variable in this ordering, emissions,
responds contemporaneously to shocks from all variables, thus showing the
fastest adjustment to system disturbances.

Finally, for a broader analysis of energy use, I decompose it into non-renewable
(henceforth �C ) and renewable sources ('C ). Since theory is unclear on the causal
ordering between these two, I allow for both specifications, i.e., �C → 'C and 'C
→ �C . I call the former first ordering, and the latter, second ordering. Unlike other
time-series studies in this field, I offer a causal ordering to identify the VAR
models based on theoretical claims.12

11This motivation resembles empirical works within the Real Business Cycle literature, where
technology is considered an external source of output dynamics. Here, I extend such view to
environmental issues. See Cogley and Nason (1995(@).

12It is outside the scope of this paper to discuss the trade-off between renewable and non-
renewable energy sources. The central interest lies on aggregate emissions, and variables such as
relative energy prices are thus not considered. Bruns et al. (2019) estimate identified SVAR models
focusing on the relationship between energy efficiency and energy savings, where prices play a

12



Finally, this VAR identification will not be a literal translation of the extended
Kaya identity, which is built on ratios. It guides us in the choice of system
variables, but my procedure will be based on variables in levels. The only
exception will be the population component, given that the focus lies on the
short-run. My solution will be working with the employment-to-population
ratio, thus incorporating all variables present in equation (1). The next section
brings more details on variable description.

Equations (8) and (9) illustrate the YC = �−1DC relation from equations (6) and
(7) for the first and second orderings, respectively. These reflect the imposed
restrictions for the row vector aC = (-C ,�C ,'C , %C ,.C ,ΦC ) ′. In other words, zero
entries in the �−1 matrix imply no contemporaneous effect from the column to
the row variable.
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From these two orderings, one is able to estimate how a shock to one variable
affects the other system covariates via Impulse-Response Functions (IRFs).

3.2.2 Two-step procedure

A novel methodology to evaluate the effects of exogenous shocks to variables of
interest have been developed by Kilian (2009) and Mendieta-Muñoz et al. (2020).
Since, by definition, shocks derived from a VAR specification are exogenous,
it is possible to assume these shocks as predetermined regressors to study
their impacts on a dependent variable. One may argue that a single-step VAR
model, as the one in the previous subsection, allows for endogenous interactions
between CO2 emissions and the other system variables. To avoid these effects,
that may potentially affect the impulse-response analysis, I set up a second
recursive VAR model, following the same identification strategy as before, this
time leaving ΦC out of aC .

This two-step VAR model for the first and second orderings, as in equations
(10) and (11), respectively, delivers five structural shocks: D-C , a technology

key role. See also Kilian (2009).

13



shock D�C , a non-renewable energy use shock, D'C , a renewable energy use shock,
D%C , a population shock, and D.C , an activity/production shock.13 These are, by
definition, orthogonal, exogenous, and unknown disturbances to the endogen-
ous regressors. Furthermore, these innovations summarize the main structural
drivers assumed to affect carbon dioxide emissions, and, by not including it in
the first step, I avoid its potential endogenous influence in the system.
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I then use the innovations derived from this first step as exogenous regressors,
in the following regression model:

ΦC = W 9 +
ℎ∑
8=1

X 9 ,8D̂ 9 ,C−8 + E 9 ,C (12)

where E 9 ,C are classical error terms; the X 9 ,8 terms encapsulate the effects of each
structural innovation on the dependent variable over a time horizon ℎ; and D̂ 9
are the estimated shocks from the first step, with 9 = 1, 2, 3, 4, 5. I also assume no
feedback from emissions to these structural innovations.

In summary, I investigate what are the main shocks affecting carbon dioxide
emissions over the short-run by employing two VAR strategies. In the first, I
use a single-step VAR, inspired by the theoretical framework described in the
beginning of this section. In the second, still using the same identification as the
first model’s, I retrieve the structural shocks from a VAR without accounting
for ΦC . By using these shocks as exogenous and predetermined covariates in
a second step, I estimate regression models with emissions as the dependent
variable. The next section briefly describes the data.

13Regarding D%C , one may assume that employment disturbances are endogenously captured by
the VAR model, thus defining its exogenous component as population shocks.
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4 Data

This section briefly describes the data set and the evolution of its variables
over the post-war period. I use seasonally adjusted annual data for the US
economy between 1949 and 2018. Data for carbon dioxide emissions (ΦC ) were
obtained from the US Energy Information Administration (US EIA)’s 2012
Annual Energy Overview, Table 11.1: “Carbon dioxide emissions from energy
consumption by source,” measured in million metric tons of carbon dioxide,
which comprehends emissions from coal, natural gas, and petroleum. Moreover,
their “Total Emissions” column contains the sum of these and also emissions
from the electric power sector derived from geothermal and non-biomass sources.
Table 11.1 also contains emissions from biomass consumption (wood, waste,
fuel ethanol, and biodiesel). To make the data as comprehensive as possible,
I have added this latter source in overall emissions. Furthermore, data from
2012 to 2018 were obtained in EIA’s Monthly Energy Review, Tables 11.1:”Carbon
dioxide emissions from energy consumption by source," Table 11.6: “Electric
power sector,” and 11.7: “Biomass.”14

Data for non-renewable (�C ) and renewable energy consumption ('C ) were
obtained from US EIA’s March 2019 Monthly Energy Review, Table 1.1: “Primary
energy overview.” Renewable energy comprehends the following sources: hy-
droelectric, geothermal, solar, wind, and biomass. The remaining are accounted
for as non-renewable sources: fossil fuels and nuclear energy. These variables
are measured in Quadrillion Btu. From the Federal Reserve Bank of St. Louis
Economic Database (FRED), I obtained time series for the population (%C ), output
(.C ), and technology (-C ) variables: the civilian employment-to-population ratio
(%), real GDP (billions of chained 2012 dollars), and labor productivity (real
output per hour of all persons for the business sector), respectively.

Finally, for robustness purposes I have also performed estimations using
two other variables as technology proxies: the aggregate capital stock and total
factor productivity. These come from the Penn World Table 9.1 (Feenstra et al.
2015), with the first being the capital stock at constant national prices for the
United States, measured in millions of 2011 US dollars, not seasonally adjusted
(1950–2017), and the second is total factor productivity at constant prices for the
United States (2011=1), not seasonally adjusted (1954–2017).

In the next figures, I briefly describe how the magnitudes of these variables
have evolved over the post-war period.15 In addition, I also show first differences
and the cyclical components of the series. These filtering techniques help in
breaking down important higher-frequency and business-cycle features of the

14In order to make the data sets from annual and monthly reviews consistent, I have excluded
emissions from LPG (liquefied petroleum gases, which are not explicitly accounted for in monthly
data sets), and excluded emission from hydrocarbon gas liquids (which are not accounted for
in annual tables). Moreover, data from the annual overview are whole numbers. In order to
be more precise, I have used data between 1949 and 1972 from this table, and the rest from the
monthly overview tables. To reach similar amounts as the annual overview table, I have added
total CO2 emissions data from Table 11.1 (excluding hydrocarbons), and added geothermal and
non-biomass emissions from Table 11.6, and biomass emissions from Table 11.7.

15Data were log-transformed, that is, 100 ∗ ;=(-C ), and so on.
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data, and these transformed series will also be used for robustness checks in
the next section. Lastly, I present some important ratios from equations (2) and
(4). These will help us better visualize the relevant components for decoupling
relationships explored in the last section.

Figures 1– 3 are divided into three main groups. In the first, I include the
two “activity” variables from the system: real GDP and the employment-to-
population ratio. In the second, the three “environmental” variables: CO2
emissions, non-renewable, and renewable energy use. Finally, the third com-
prehends the three “technology” variables: labor productivity, total factor
productivity, and the aggregate capital stock. The right panels illustrate the
series in first differences (gray) and their cyclical components extracted with the
Hodrick-Prescott filter (black).16

Real output experienced an average annual growth rate of 3.15% in this
period. From the filtered series, we observe the main recession periods: the
Eisenhower recession in the late 1950s, the first oil shock in 1973, the Volcker-
shock throughout the 1980s, the Dotcom bubble in the late 1990s, and the Great
Recession in 2008-09. The employment-to-population ratio has the lowest growth
rate among all variables considered (0.12%), and also reflects the state of the
business cycle. In both panels, we observe its increasing trend since mid-1970s,
with increasing female participation in the labor force, and its major decrease
during the financial crisis.

[FIGURE 1 ABOUT HERE]

CO2 emissions grew 1.25% per year over this sample period. Since 2007,
we observe a slight decline, close to 1% per year, in its historical trend. Non-
renewable energy consumption grew, on average, 1.63% per year, and renew-
ables use, 1.96%. The two main declining periods in non-renewable energy
consumption followed from the two oil shocks in the 1970s, correlating with
a similar behavior in the emissions series. These episodes paved the way for
investments in renewable energy sources, with robust budget increases in the
second half of the 1970s, abruptly stopping before 1980. Furthermore, the Gulf
War in the beginning of the 1990s contributed to a resurgence of renewable
policies, which were abandoned by the end of that decade. Finally, since 2000
renewable energy use has been growing at larger rates than non-renewables,
though at a much lower magnitude (Laird and Stefes 2009).

[FIGURE 2 ABOUT HERE]

Lastly, labor productivity experienced a relatively stable growth path over
this sample period, registering an annual rate of 2.09%. TFP and the capital
stock grew, respectively, 0.69% and 2.75% per year.17 From the filtered series,
we observe that labor productivity and TFP show similar paths over higher
frequencies, with the major decreases occurring between the late 1970s and

16Its smoothing parameter (_) was set to 100, as recommended for annual data (Enders 2008).
17Since TFP and the capital stock are indexes, these series are not presented in logs.
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the beginning of the 1980s. Such behavior reflects the recession period experi-
enced by the US economy prior to the Great Moderation, with major losses in
productivity (Stock and Watson 2002; Mendieta-Muñoz et al. 2020).

[FIGURE 3 ABOUT HERE]

Figure 4 illustrates the remaining components of equations (2) and (4). On
the left panels, energy intensity (�C/.C ) and the energy-labor ratio (�C/!C ). On
the right, emissions intensity of energy consumption (ΦC/�C ) and emissions per
worker (ΦC/!C ). For this figure, I use the sum of non-renewable and renewable
energy for total primary energy use, and !C is the number of employed workers
for the US business sector.18

Energy intensity declined 1.48% per year over this period, with a slight
uptick prior to 1970. After that, it showed a stable decrease. Since, by definition,
energy intensity is the inverse of energy productivity, the US economy has
shown an energy-saving pattern of technical change over this sample period.
The emissions-energy ratio also declined, with three different periods: the first,
until the first oil shock shows a sharp decrease; the second, stable with a slight
decline until mid-2000s; and the last with a more acute reduction until 2018. The
energy-labor ratio grew until the first oil shock, experiencing a decline since
this crisis. This pattern was reinforced after the second oil shock, as we see a
slight prior increase in the series. Finally, emissions per worker showed a similar
behavior, with the turning point for its decrease also being the first oil embargo,
and emphasized after the second.

[FIGURE 4 ABOUT HERE]

Overall, we observe a relative decoupling between energy use and output, as
well as between emissions and energy use. Furthermore, the two oil shocks of the
1970s represented a turning point in the behavior of the energy-labor ratio and
emissions per worker. This last result shows that, historically, neither emissions
nor energy consumption increase with rising employment. However, except
for energy intensity, the decreasing annual rates of the remaining variables are
below 1%. When comparing the energy-labor ratio between the first and last
years, it has barely changed. Countries experiencing absolute decoupling, such
as France, Italy, and the United Kingdom, have registered more robust negative
rates for these variables over time (Marquetti et al. 2019). Furthermore, even
though the last figures show positive growth rates of both labor and energy
productivity, such technological change pattern has not been translated into
reduced use of non-renewable energy sources, nor in reduced CO2 emissions.
These facts will be further developed in the next section.

18These seasonally adjusted data were extracted from the US Bureau of Labor Statistics (BLS,
PAYEMS series).
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5 Results

This section provides technical details and interpretations for the econometric
estimations. I begin with the first procedure, with a single-step VAR. Next, I
explore the two-step strategy, where I retrieve structural innovations from a
VAR without emissions, then estimating the latter’s response to these exogenous
shocks in a second step. Lastly, I implement several robustness checks, by both
testing different technology variables and applying filtering methods. By the
end of this section, we will be able to verify what are the main structural shocks
affecting aggregate carbon emissions over the post-war era, and whether there
are relevant quantitative differences between these two methodologies. Lastly,
for compactness purposes, the paper only presents results for the first causal
ordering, since similar findings are verified for both cases.

The implementation of VAR models with its covariates in levels has become
more widely accepted in empirical time-series studies, given the low power
of unit-root tests (Enders 2008; Basu and Gautham 2019; Mendieta-Muñoz et
al. 2020). Adding the fact that results are robust to both data in levels, as well
as using either first differences and the Hodrick-Prescott (HP) filter for both
orderings, I opt for having the baseline VAR models in levels, letting the data
“speak for itself”, and leaving these other two transformations as robustness
checks.

5.1 One-step VAR estimation

Following the recursive identification strategies from Section 3, I estimate VAR
models for the row vectors aC = (-C ,�C ,'C , %C ,.C ,ΦC ) ′, the first ordering, and aC =
(-C ,'C ,�C , %C ,.C ,ΦC ) ′, the second ordering. All variables were log-transformed
(i.e., 100 ∗ ;=(-C ), and so on) for interpretation easiness. According to Lagrange
Multiplier-type tests, a lag length of 3 yields well-specified models, that is,
without serial correlation at all lags for both orderings. Furthermore, both
models do not present heteroskedastic residuals, according to a White test.

Following these tests, I evaluate the short-run interactions within this system
via Impulse-Response Functions (IRFs) for a horizon ℎ of 10 years, through
a Cholesky decomposition method. Figure 5 illustrates results for this VAR
model, with dashed lines denoting 95% bootstrapped standard errors generated
via 5,000 replications of Monte Carlo simulations. For compactness, the “→”
symbol denotes the response of the row variable to a one-standard deviation
orthogonalized shock to the column variable, with the main diagonal panels
corresponding to responses to own shocks. For instance, “�C → -C” designates
the response of labor productivity to a one-standard deviation non-renewable
energy use structural shock.

Firstly, all variables respond positive and significantly to their own shocks,
as expected. Secondly, the IRFs do not show statistically significant effects of
a technology shock on non-renewable energy use and on the employment-to-
population ratio. On the other hand, output reacts positively to a 1% technology
shock for the first three years, beginning at 0.7%, increasing to 1.1% in the last
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significant period. Finally, despite a technology shock not significantly impacting
the use of non-renewable sources, renewable energy demand responds negative
and significantly in the first (-2%) and third (-3.4%) years. Overall, the technology
shock only significantly impacts the use of renewable sources and output.

A non-renewable energy shock does not produce significant effects on re-
newable energy demand, but positively affects employment and output, which
are the key business cycle variables in this system. These effects are more
prominent in the first year for output and in the second for employment, with
responses vanishing in the second year for output and in the third for the
employment-to-population ratio. In the sequence of this cyclical process, when
such effects to employment and output decay, we observe a minor, but still
significant, negative effect of this energy shock on labor productivity in the
second year (-0.8%). Furthermore, we observe a similar response of productivity
to a population shock, reinforcing this cyclical behavior and the assumption that
technology has the slowest adjustment to exogenous disturbances.

Output reacts positive and significantly to all shocks, except for emissions
and renewable energy use innovations. The latter do not significantly impact
any of the endogenous variables, reflecting the historical low share of renewable
sources in the US energy mix. Despite its recent upward trend, renewables still
do not produce robust effects in these variables.

Finally, the only statistically significant response of CO2 emissions is to a non-
renewable energy use shock. A 1% shock in “dirty” energy use positively impacts
emissions by 2.5% in the first year. This effect stays positive and significant until
the fifth year, with a 1.4% response. In this specification, technology shocks do
not generate significant impacts to pollution. On the other hand, we observe
a mildly negative, but significant, response of non-renewables to an emissions
shock in the third year (-0.9%). Moreover, neither emissions nor non-renewable
energy consumption increase with a population shock. Indeed, it decreases
the use of non-renewable sources, while not significantly affecting pollution.
Considering that this short-run setting mostly captures population dynamics
through changes in employment, we observe that increases in the labor input do
not increase the use of non-renewable sources and pollution.

In summary, this one-step estimation renders relevant features relative to
this paper’s theoretical background. While we observe a positive impact on
output, there is no statistically significant impact of a technology shock on CO2
emissions. As expected, these react positively to non-renewable energy use
shocks. Furthermore, the negative response of non-renewables to an emissions
shock takes three years to be significant, with a much smaller magnitude than
the reverse impulse-response relation. This fact, along with the negative impact
of an output shock to the use of non-renewable sources, does not support an
absolute decoupling trajectory for the US economy, based on post-war data.

[FIGURE 5 ABOUT HERE]
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5.2 Two-step VAR procedure

I begin the two-step VAR procedure following the same identification strategy
as before, but this time excluding carbon dioxide emissions from the baseline
model. Next, I retrieve the structural shocks from this model, using these as
exogenous regressors for the second step. Then, I compute IRFs to quantify the
response of emissions to the five structural innovations estimated in the first
step. Finally, I compare the differences between the two adopted methodologies.

In both orderings, a lag length of 4 yields well-specified models. In addition,
both models do not suffer from heteroskedasticity, using the same aforemen-
tioned tests. Figure 6 illustrates the impulse-response functions for the first
step. As in the prior model, we observe similar reactions from the endogenous
variables. Both quantitative impacts and statistical significance measures remain
similar to the one-step procedure.

[FIGURE 6 ABOUT HERE]

This two-step VAR models delivers five structural shocks: a technology shock,
a non-renewable energy use shock, a renewable energy use shock, a population
shock, and an output shock. From equation (12), I verify the response of ΦC
to each of these shocks separately. Given that this second step uses generated
covariates from the previous stage, I follow Kilian (2009) by testing whether
these residuals can be considered predetermined relative to ΦC . This was done
by, first, estimating an AR(4) model for emissions19 and, secondly, computing
the contemporaneous correlation between this AR(4) model’s residuals and the
other five structural shocks. All linear association coefficients were low (below
15%), with the only exception being the one between ΦC and the non-renewable
energy use shock (77%). This was expected, given that emissions mostly derive
from these sources. Furthermore, all IRFs were generated with 95% bootstrapped
confidence intervals, also derived from 5,000 Monte Carlo simulations.

Figure 7 illustrates the effects of a one-standard deviation shock to each of
the five structural innovations on ΦC .20 This time, technology and non-renewable
energy use shocks have significant effects on aggregate CO2 emissions. A
1% technology shock produces a 0.71% increase in emissions in the first year,
increasing to 1.25% in the following period. For the next years, the effect
is no longer significant. In addition, a 1% non-renewable energy demand
shock increases emissions by 2.10% in the first year, decreasing to 1.71% in
the subsequent year, also vanishing for the other periods.

[FIGURE 7 ABOUT HERE]

This two-step procedure provides an additional significant shock to aggreg-
ate carbon dioxide emissions. From the single-step VAR, only a non-renewable

19The AR model’s order was selected reflecting the same lag length as the first step model’s.
20As suggested by Kilian (2009), I introduced 3 lags, incorporating three years of data, to

estimate (12). None of the models (including robustness checks) present serial correlation
problems at 5% of significance.
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energy consumption shock had a statistically significant impact on emissions,
with the highest effect, 2.5%, happening in the first year. From the second step,
this impact is slightly lower (2.1%) in the first year. And the positive impact of a
technology shock to emissions renders an additional evidence on the dynamic
interactions between energy use and the technological profile of the US economy
over this period. In spite of the downward historical trends of energy intensity
and the emissions intensity of energy use, energy efficiency gains have not been
sufficient to mitigate emissions. Along with the low participation of renewable
sources within production, technological improvements have strongly favored
the use of non-renewables, with both factors supporting increases in carbon
dioxide emissions.

5.3 Robustness checks

Here, I briefly present results for different specifications of the VAR models.
In addition to the baseline, I have estimated recursive VAR models for both
one- and two-step procedures with variables in first differences and de-trended
with the HP filter. Moreover, these models have also been estimated with two
different technology variables: the aggregate capital stock ( C ) and total factor
productivity ()�%C ), replacing the baseline model’s labor productivity.

Based on a battery of unit-root tests, it is possible to infer that all used
variables are integrated of order 1.21 Hence, for VAR models in first differences,
all variables were differenced once to achieve stationarity. Furthermore, to
de-trend the series with the HP filter, I set its smoothing parameter (_) to 100, as
recommended for annual data (Enders 2008).

Figures 8, 9, and 10 illustrate responses of CO2 emissions to each of the
structural shocks for the single-step VAR specification with labor productivity,
the capital stock, and total factor productivity, respectively. For compactness,
these figures only present emissions responses, and the full impulse-response
systems are available in the Appendix. Moreover, responses from single-step
VAR models estimated with the HP filter will only be discussed in text.22

In general, these alternative specifications produce similar responses to the
ones verified in the baseline single-step VAR estimation, with a few exceptions.
All models in first differences and with the HP filter return a positive and signi-
ficant response of non-renewable energy demand to technology shocks, which
is not significant in the baseline model. Furthermore, only models with labor
productivity as the technology variable show a negative and significant response
of renewable energy use to technology shocks. In the other specifications, such
effect is not statistically significant. Lastly, in models with the capital stock and
TFP, a technology shock positively affects the employment-to-population ratio,

21I have implemented four different unit root tests: Augmented Dickey-Fuller (ADF) (Said and
Dickey 1984) , Dickey-Fuller with GLS de-trending (ADF-GLS) (Elliot et al. 1996), Ng and Perron’s
Modified Phillips (M-P) (Ng and Perron 1995), and the Kwiatowski-Phillips-Schmidt-Shin (KPSS)
(Kwiatowski et al. 1992).

22The lag lengths for these single-step VAR models are 4, 4, and 3, respectively. In addition, lag
lengths for VAR models with variables de-trended with the HP filter are 4, 3, and 2, respectively.
None of these models present serial correlation or heteroskedasticity.
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which was not verified before. This response is also verified in all models with
the HP filter.

After these general observations, I concentrate on the response of CO2
emissions to all structural shocks for the single-step VAR methodology. Figure 8
presents similar results to the baseline procedure, with only non-renewable
energy use shocks significantly affecting emissions, in addition to its own shock.
In the first year, a 1% non-renewable energy use shock produces a 2.8% increase
in aggregate emissions. This same specification, this time estimated with all
variables de-trended with the HP filter confirms the latter effect, but also returns
a significant and positive impact of a technology shock on emissions, of 0.7% in
the first, and 1.3% in the second year.

[FIGURE 8 ABOUT HERE]

Figures 9 and 10 present similar responses of CO2 emissions to these struc-
tural shocks. In both cases, technology and non-renewable energy use shocks
positive and significantly affect emissions. Models with the capital stock both in
first differences and with the HP filter return technology shocks more strongly
affecting ΦC than non-renewable energy use shocks, while TFP specifications
show the contrary. In summary, most single-step VAR estimations verify both
technology and non-renewable energy use shocks positive and significantly
affecting aggregate carbon emissions, similarly to the two-step methodology
findings.

[FIGURE 9 ABOUT HERE]

[FIGURE 10 ABOUT HERE]

Next, I present results for the two-step VAR procedure. For compactness, I
only present the statistically significant shocks affecting CO2 emissions. Once
again, technology and non-renewable energy use shocks positively affect ΦC over
the short-run. This result is robust to data in first differences and de-trended
with the HP filter, for all three different technology proxy variables.

Figure 11 illustrates these results, with upper panels illustrating results for
the data in first differences, and the lower for de-trended data with the HP
filter. I also separate responses by the technology variable used in each model:
labor productivity (left), capital stock (center), and total factor productivity
(right). Solid black lines represent non-renewable energy use shocks, with
dot-and-dashed lines denoting its standard errors. Solid and dashed gray lines
stand for the technology shocks and standard errors, respectively.

In the upper panels, I show cumulative impulse-response functions (CIRFs)
of CO2 emissions relative to these two structural shocks.23 Except for the
baseline specification with labor productivity, the two other panels show a
higher cumulative effect of the technology shock on emissions. Furthermore, in
all cases the latter shock is more permanent, significantly lasting from the first to

23Since these results are based on data in first differences, presenting results for this second step
through cumulative IRFs is recommended (Mendieta-Muñoz et al. 2020).
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the sixth year in the left panel, until the fifth in center panel, and until the eighth
year in right panel. The non-renewable energy shock also significantly persists
until the eighth year in the left panel, but only until the second in the other two.

The bottom panels present IRFs for models with the variables de-trended by
the Hodrick-Prescott filter. This time, emissions do not respond as permanently
as before, and such behavior resembles baseline results. Only in the specification
with the capital stock the response to a technology shock is higher than to a
non-renewable energy use shock, with both effects being statistically significant
for the first and second years. For two-step specifications with these other
technology variables in levels, the same results are verified.

[FIGURE 11 ABOUT HERE]

The robustness checks reinforce the positive response of CO2 emissions
to technology and non-renewable energy consumption shocks. By using first
differences and de-trended series with the HP filter, higher frequencies of the
data become more prominent, with higher importance to immediate short-run
and business-cycle effects. Both for the one- and two-step procedures, similar
results are also verified for the different technology variables, the capital stock
and total factor productivity.

6 Conclusion

This paper investigated the main structural shocks affecting aggregate carbon
dioxide emissions in the US economy over the post-war era. Its main contribu-
tion to the recent Ecological Macroeconomics literature is twofold: first, on the
employed empirical methodology, and second, on the resulting evidence con-
cerning the linkages between technological progress and emissions mitigation.
Based on two different Vector Autoregressive (VAR) strategies, with recursive
identifications based on an extended Kaya identity and on current claims for
green growth, I emphasize the role of technological progress to achieve an
absolute decoupling between CO2 emissions and output. Firstly, by estimating
a single-step VAR model including labor productivity, non-renewable and
renewable energy consumption, the employment-to-population ratio, real GDP,
and carbon emissions, one directly observes the latter’s response to structural
shocks. Secondly, adopting a novel two-step VAR procedure, where initially, I
estimate a VAR without emissions, retrieving its structural shocks. Then, after
ensuring that these innovations could be considered predetermined, I compute
the response of CO2 emissions to each of these shocks via regression models.
The main conclusions are summarized as follows:

1. For the baseline VAR models with variables in levels, the one-step proced-
ure shows that only non-renewable energy use shocks significantly affect
CO2 emissions over the short-run. On the other hand, the two-step pro-
cedure includes a technology shock as positive and statistically significant.
In both cases, non-renewable use shocks also have a positive impact on
emissions.
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2. Robustness checks included estimating both one- and two-step VAR mod-
els with data in first differences and de-trended with the Hodrick-Prescott
filter. In addition, these models were also computed with different tech-
nology proxy variables, the aggregate capital stock and total factor pro-
ductivity. Except for a single-step VAR with the baseline identification
in first differences, which confirms baseline one-step results, all other
specifications support positive and significant effects of technology and
non-renewable energy use shocks to carbon dioxide emissions.

3. All conclusions for the one- and two-step procedures, including robustness
checks, are also verified for the second causal ordering.

4. In addition to these results, key decoupling variables have shown weak
growth avenues over the sample period. In spite of decreasing historical
trends, energy intensity, output intensity of energy use, emissions per
worker, and the energy-labor ratio levels are far from those observed by
countries experiencing absolute decoupling, such as France, Italy, and the
United Kingdom. The US economy experienced rising labor and energy
productivity over the post-war era, but this progress was not translated
into significant effects macroeconomic effects of renewable energy use, or
less pollutant techniques. On the contrary, technological progress in the
US economy still leads to higher use of “dirty” sources and increased CO2
emissions, thus not supporting a mitigation scenario. On the basis of this
historical relationship between aggregate technology and emissions, only
aggressive macroeconomic, energetic, and institutional shifts may lead to
an effective absolute decoupling path.

This marginal contribution to the literature suggests several paths for future
research. In addition to longer-run analyses, the inclusion of price variables may
help to further address the relationship between renewable and non-renewable
energy sources throughout US history. Furthermore, extending the present
analysis to a panel of countries is suitable for a comparison with other economies,
with possibly different energy supply compositions. Lastly, these aggregate
findings may also pave the way to microeconomic approaches, at both sectoral
and firm levels.
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Figure 1: Activity variables, 1949–2018. Left panels: series in natural logarithms. Right
panels: first differences (gray), de-trended series with the HP filter (black).
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Figure 2: Environmental variables, 1949–2018. Left panels: series in natural logarithms.
Right panels: first differences (gray), de-trended series with the HP filter (black).

31



320

360

400

440

1949 1960 1970 1980 1990 2000 2010 2018

Labor productivity

0.65

0.75

0.85

0.95

1960 1970 1980 1990 2000 2010 2018

Total factor productivity

1600

1650

1700

1750

1950 1960 1970 1980 1990 2000 2010 2018

Aggregate capital stock

−2.5

0.0

2.5

5.0

7.5

1950 1960 1970 1980 1990 2000 2010 2018

−4

−2

0

2

4

1955 1970 1980 1990 2000 2010 2018

−2

0

2

4

1950 1960 1970 1980 1990 2000 2010 2018
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Figure 5: Impulse-Response Functions, single-step VAR, first ordering. Solid
lines indicate estimated responses, while dashed lines are 95% bootstrapped confidence intervals
obtained via 5,000 Monte Carlo replications.

34



0

1

2

2 4 6 8 10

Xt → Xt

−3

−2

−1

0

1

2

2 4 6 8 10

Xt → Et

−5.0

−2.5

0.0

2.5

5.0

2 4 6 8 10

Xt → Rt

−1.5

−1.0

−0.5

0.0

0.5

2 4 6 8 10

Xt → Pt

−2

−1

0

1

2

2 4 6 8 10

Xt → Yt

−1.5

−1.0

−0.5

0.0

0.5

2 4 6 8 10

Et → Xt

−1

0

1

2

3

2 4 6 8 10

Et → Et

−2

0

2

2 4 6 8 10

Et → Rt

−0.5

0.0

0.5

1.0

1.5

2 4 6 8 10

Et → Pt

−1

0

1

2 4 6 8 10

Et → Yt

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10

Rt → Xt

−2

−1

0

1

2

2 4 6 8 10

Rt → Et

−2

0

2

4

6

2 4 6 8 10

Rt → Rt

−0.5

0.0

0.5

1.0

2 4 6 8 10

Rt → Pt

−1

0

1

2

2 4 6 8 10

Rt → Yt

−1.0

−0.5

0.0

0.5

1.0

2 4 6 8 10

Pt → Xt

−4

−3

−2

−1

0

1

2 4 6 8 10

Pt → Et

−4

−2

0

2

2 4 6 8 10

Pt → Rt

−0.5

0.0

0.5

1.0

2 4 6 8 10

Pt → Pt

−1

0

1

2 4 6 8 10

Pt → Yt

0.0

0.5

1.0

1.5

2.0

2 4 6 8 10

Yt → Xt

−1

0

1

2

3

2 4 6 8 10

Yt → Et

−4

−2

0

2

2 4 6 8 10

Yt → Rt

−0.4

0.0

0.4

0.8

1.2

2 4 6 8 10

Yt → Pt

0

1

2

3

2 4 6 8 10

Yt → Yt

Figure 6: Impulse-response functions, two-step VAR, first step, first ordering.
Solid lines indicate estimated responses, while dashed lines are 95% bootstrapped confidence
intervals obtained via 5,000 Monte Carlo replications.
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Figure 8: Response of CO2 emissions to structural shocks, one-step VAR in
first differences and with labor productivity, first ordering. Solid lines indicate
estimated responses, while dashed lines are 95% bootstrapped confidence intervals obtained via
5,000 Monte Carlo replications.
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Figure 9: Response of CO2 emissions to structural shocks, one-step VAR in
first differences and with the capital stock, first ordering. Solid lines indicate
estimated responses, while dashed lines are 95% bootstrapped confidence intervals obtained via
5,000 Monte Carlo replications.
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Figure 10: Response of CO2 emissions to structural shocks, one-step VAR in
first differences and with total factor productivity, first ordering. Solid lines
indicate estimated responses, while dashed lines are 95% bootstrapped confidence intervals
obtained via 5,000 Monte Carlo replications.
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Figure 11: Responses of carbon dioxide emissions to non-renewable energy
use and technology structural shocks, first differences and de-trended series
with the HP filter, first ordering. Upper panel: cumulative responses to technology
shocks (solid gray lines), with 95% bootstrapped confidence intervals obtained via 5,000 Monte
Carlo replications (dashed gray lines), and non-renewable energy use shocks (solid black lines),
with 95% bootstrapped confidence intervals (dot-and-dashed black lines) for VAR models with
variables in first differences. Lower panel: responses to technology and non-renewable energy
use shocks for VAR models with variables de-trended by the Hodrick-Prescott filter.
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A Appendix

Below, the full impulse-response diagrams for the one-step VAR robustness
checks.
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Figure 12: Impulse-Response Functions, single-step VAR in first differences
and with labor productivity, first ordering. Solid lines indicate estimated responses,
while dashed lines are 95% bootstrapped confidence intervals obtained via 5,000 Monte Carlo
replications.
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Figure 13: Impulse-Response Functions, single-step VAR in first differences
and with the capital stock, first ordering. Solid lines indicate estimated responses,
while dashed lines are 95% bootstrapped confidence intervals obtained via 5,000 Monte Carlo
replications.
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Figure 14: Impulse-Response Functions, single-step VAR in first differences
and with total factor productivity, first ordering. Solid lines indicate estimated
responses, while dashed lines are 95% bootstrapped confidence intervals obtained via 5,000
Monte Carlo replications.
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